The Management of Hyperfunctional Facial Lines With Botulinum Toxin

A Collaborative Study of 210 Injection Sites in 162 Patients

Andrew Blitz, MD, DDS; William J. Binder, MD; Jonathan E. Aviv, MD; Monte S. Keen, MD; Mitchell F. Brin, MD

Objective: To determine the optimum dose and efficacy of botulinum toxin injections in the management of hyperfunctional facial lines.

Design: This study included 210 hyperfunctional facial sites in 162 different patients. The patients had preinjection and postinjection photographic documentation and ratings on a 4-point qualitative evaluation scale of lines at rest and with action. The patients then had botulinum toxin type A injections via a monopolar hollow bore, Teflon-coated electromyographic needle into the facial muscles associated with the hyperfunctional lines. The total dose for each region of 1.25 to 25 U was divided into 1.25- to 5-U aliquots representing 0.1 to 0.2 mL per injection site, depending on the site and the prior experience with that patient on using toxin. The patients had their reevaluation at 2 to 3 weeks after injection. Patients returned for further follow-up when the therapeutic effect diminished.

Patients: One hundred sixty-two patients had 210 hyperfunctional sites evaluated and injected. The group consisted of 25 male patients and 137 female patients ranging in age from 21 to 78 years with a mean (±SD) of 46.1 (±16.0) years. All patients had cosmetically troubling hyperfunctional lines involving the forehead, glabella, crow’s feet (lateral canthal lines), nasolabial area, platysma, and oral commissural region.

Results: All patients had an effect of toxin within the first 24 to 72 hours. Ninety-five percent of the patients treated had cosmetic improvement of unsightly facial lines or contractions. The best results were achieved in management of the forehead lines, followed by glabella, crow’s feet, and nasolabial. The dose for forehead lines was 5 to 25 U (mean ± SD, 17.3 ± 6.2 U); glabellar lines, 3 to 20 U (mean ± SD, 11.1 ± 3.1 U); crow’s feet, 5 to 15 U (mean ± SD, 6.2 ± 1.6 U); nasolabial, 2.5 to 5 U (mean ± SD, 3.12 ± 1.2 U), and platysma, 10 to 20 U (mean ± SD, 15 ± 9.0 U). Evaluation by age and site suggested a trend of increased toxin dose with increased age. Effects of the toxin are usually seen 24 to 72 hours after injection; last from 3 to 6 months, whereas the increased muscular activity returns, as do the hyperfunctional lines. The only morbidity was related to temporary mild weakness of other adjacent facial muscles. There were no systemic side effects noted.

Conclusion: Botulinum toxin is a safe and important adjunctive technique for the management of patients with symptomatic hyperfunctional facial lines.


Since 1989 we have treated more than 1500 patients with focal dystonias using botulinum toxin type A and have published our experience with these patients who have blepharospasm, torticollis, oromandibular dystonia, adductor and abductor hemifacial dystonia, ling dystonia, and hemifacial spasm.1-6 We have previously reported success in the reduction of hyperfunctional facial lines using botulinum toxin type A injections in patients who have blepharospasm, Meige syndrome involving the upper and/or lower parts of the face, hemifacial spasm, and post-Bell palsy facial synkinesis.6 We also reported statistically significant efficacy using botulinum toxin type A for hyperfunctional facial lines in a placebo-controlled, double-blind study, as well as the cosmetic effects of botulinum toxin in limited studies.5,13,15,16 Carruthers and Carruthers16 also described the therapeutic efficacy for management of wrinkles. Based on these previous studies, we devised a collaborative study of 2 institutions to evaluate the effect of dose, age, site, and complications on the successful diminution of hyperfunctional facial lines in a large cohort of patients.
PATIENTS, MATERIALS, AND METHODS

BOTULINUM TOXIN

Botulinum toxin is produced by the bacteria Clostridium botulinum. Eight serologically distinct toxins designated A, B, C1, C2, D, E, F, and G have been described. Botulinum toxin exerts its effect at the neuromuscular junction by inhibiting the release of acetylcholine, and this in turn causes weakness of the affected muscles. Pharmacological and morphological studies suggest the toxin enters the nerve ending via a receptor-mediated endocytosis. This process appears to be energy dependent, but independent of calcium concentration or nerve stimulation. 25-29 Botulinum toxin does not affect the synthesis or storage of acetylcholine, but rather the release of vesicle-bound acetylcholine. The therapeutic effect is related to the peripheral blockade of neuromuscular activity through an enzyme-mediated interference in neurotransmitter excitation. 30,31

There have been no long-term adverse effects of significant health hazard with the use of botulinum toxin type A for any indication. 32 Muscle biopsy specimens taken from patients after repeat injections have failed to show any long-term evidence of permanent degeneration or atrophy and those patients have received doses that were 2 to 5 times the doses we have used for aesthetic improvement. 33 Patients receiving very high doses of toxin may also develop antibodies to the toxin, however, the antibodies are not dangerous, but render the patient unresponsive to further treatment. The factors that predispose patients to the development of antibodies is unknown, but some experience has shown that the risk is increased with the use of more than 300 U. 30 Therefore, we have developed and used in electromyography (EMG)-guided technique to increase the accuracy of the injection that may therefore minimize the dose and antigenic exposure.

Botulinum toxin type A has been approved by the Food and Drug Administration as safe and effective therapy for blepharospasm, strabismus, and hemifacial spasm since December 1989. The National Institutes of Health consensus conference of 1990 also included muscle and effective therapy the treatment of disorders of spasticity and dysphonia, oculomotor dystonia, and cervical dystonia. 32

PATIENTS

Our present series includes 210 different treatment sites in 162 patients. This includes 25 male patients and 137 female patients ranging in age from 21 to 89 years with a mean (±SD) age of 46.4 (±17.6) years (SEM: 0.07 years). All patients were given internal review board-approved informed consent before treatment and inclusion in the study. The sites include 40 forehead, 69 glabella, 73 crow's feet, 4 platysma, 4 nasolabial, and 1 mentalis.

One international unit of botulinum toxin is defined as the median lethal dose in mice. The median lethal dose in hamsters is estimated to be approximately 500 IU. 30 Lyophilized botulinum toxin (Myobloc, Allergan, Irvine, Calif) was obtained and stored frozen as recommended (−20°C) until reconstitution with sterile saline at the time of injection.

INJECTION TECHNIQUE

In this study, the toxin was reconstituted with normal saline to a concentration of 25 to 50 units/mL. Botulinum toxin was injected via a monopolar hollow fork, Teflon-coated 25-gauge needle connected to an EMG recorder. Using a technique we have previously described, 33,34,35,36 the needle is placed through the skin with the electrodiagnostic needle line into the muscle associated with the hyperfunctional line. Once the needle is in the muscle, the patient is instructed to contract the line with a smile or frown, until the maximum EMG signal is achieved. The needle may be moved until it is in the most active part of the muscle complex. Tissue is then injected in 0.1-ml aliquots. By using an initial low dose, a graded weakening can be achieved over sequential visits.

PATIENT EVALUATION

Patients were first evaluated with a thorough review of their medical history, medications, and prior facial plastic surgery. Any patient who had a history of sensitivity to toxin, or had a neuromuscular disorder such as myasthenia gravis or Eaton-Lambert syndrome, or those patients who could not complete the protocol were not treated. Preliminary photographs were taken for each patient and for each site both at rest and during activity. All photographs were standardized by using the same camera, lens, flash, flash system, and filter. Photographs were obtained at 30 cm with a 105-mm lens oriented vertically using 800-side film (Ektachrome Kodak, Rochester, NY) and a 5-in flash. A set of close-up photographs at 60 cm with the camera ori- ented horizontally was also obtained. Photographs were repeated at 2 weeks and 6 weeks after injection. Patients and physicians independently rated the hyperfunctional lines with a 6 to 10 rating scale (0 reflecting no facial wrinkles; 1 signifying mild facial wrinkles; 2 denoting moderate facial wrinkles; and 3 representing severe facial wrinkling) at rest and during function, before injection, and at 2 and 6 weeks after injection. The physi- cian and patient ratings were averaged and then tabulated and analyzed.

RESULTS

The doses used in this study were based on our previous experience and modified for some patients depending on response. The dose for forehead lines was 5 to 25 U with a mean (±SD) of 17.3±6.2 U (SEM, 1.04 U; glabella lines, 5 to 20 U with a mean (±SD) of 11.5±3.1 U (SEM, 0.11 U; crow's feet, 5 to 15 U with a mean (±SD) of 6.2±1.8 U (SEM, 0.19 U); nasolabial, 2.5 to 5 U with a mean (±SD) of 3.12±1.2 U (SEM, 0.62 U); and platysma, 10 to 20 U with a mean (±SD) of 15.5±4.2 U (SEM, 2.1 U). A beneficial response was found in 519 (95%) of 210 facial sites. All patients had toxin effects within the first 24 to 72 hours (Table). Overall, the best average beneficial change in function was noted in the forehead (1.84, 46% improvement) followed by the glabellar area (1.5, 37.9% improvement) and crow's feet (1.36, 34% improvement). The rating
Most facial rejuvenation procedures do not address the cause of the hyperfunctional lines. These lines appear to be the result of a functional pull of the underlying mimetic facial musculature. Patients who have bell palsy have been observed to have smooth skin without deep hyperfunctional lines. Botulinum toxin weakens the overactive underlying muscle contraction, causing a flattening of the facial skin and an improved cosmetic appearance.

Other facial lines related to acinic skin changes or age-related loss of dermal elasticity with a laxity of facial skin may not respond to the toxin. In very young patients, subtle changes at rest are harder to appreciate, such as the effect on the medial forehead. Botulinum toxin has several advantages over other techniques of management of hyperfunctional facial lines. Botox can be performed during a routine office visit, with minimal discomfort. The injections may be given serially with small doses to titrate the results while a patient's treatment strategy is being formulated. The only morbidity was related to temporary mild weakness of other adjacent facial muscles. The EMG technique allows for accurate placement of the needle electrode in the more active portions of the muscle, which may achieve maximum effect with minimum dose. Accurate EMG placement and minimal dose is likely responsible for a low incidence of morbidity of our technique and the overwhelmingly successful effects of the injections. Overall, the best average change in function was noted in the forehead, followed by the glabellar area and then in the crow's feet. More than 90% of the patients were extremely pleased with the results and returned for further treatment at 4 to 5 months when the effect wore off.

Continuous efforts are necessary to determine the exact mechanism of the toxin, the short-term and long-term effects on muscle, and adjuvants or other mechanisms to obtain longer periods of benefit. Botulinum toxin may also provide a useful laboratory tool to explore the
various factors that contribute to facial line formation. It is our experience that botulinum toxin is a safe and important adjunctive technique for the management of patients with syngnathic, hypertrophic facial lines. Most techniques currently used for the management of overly hypertrophic facial lines fail to address the underlying muscular factors that contribute to lines. Our previous work using botulinum toxin for the management of facial dyskinesia, facial synkinesis, and hemifacial spasm has shown a reduction in the severity of the facial lines and a more pleasing cosmetic appearance. We previously proved efficacy in another study that was double-blind and placebo controlled. This current collaborative study was designed to study efficacy and dose for each facial site and age-related changes. OR 210 sites in 62 patients, 96% efficacy was shown. Qualitative measurements were made using a 0 to 3-point severity scale index before injection and after injection. Patients had only one site injected in any given period. The injections were EMG guided to minimize dose, improve the precision of the delivery, and maximize effect. The best results were found to the management of forehead lines, followed by glabellar and crow's feet. Benefits were also seen with nasolabial lines and periorbital bands. There was also a trend in the need for increased dose with increased age. The effects of the toxins were seen within 24 to 72 hours and lasted on average 4 to 6 months. Additional studies will be necessary to determine the exact mechanisms of the toxin, the short-term and long-term effects on muscle, and adjuvants or other mechanisms to obtain longer periods of benefit. Botulinum toxin is a safe and important adjunctive technique for treatment of patients with symptomatic hypertrophic facial lines.

Accepted for publication January 14, 1994.

REFERENCES